TDDFT (Casida)¶
Time-Dependent Density Functional Theory, Casida’s approach.¶
This tutorial aims at showing how to get the following physical properties, for finite systems:
- Excitation energies
- Associated oscillator strengths
- Frequency-dependent polarizability and optical spectra
in the Casida approach, within Time-Dependent Density Functional Theory.
This tutorial should take about 30 minutes.
Note
Supposing you made your own installation of ABINIT, the input files to run the examples are in the ~abinit/tests/ directory where ~abinit is the absolute path of the abinit top-level directory. If you have NOT made your own install, ask your system administrator where to find the package, especially the executable and test files.
In case you work on your own PC or workstation, to make things easier, we suggest you define some handy environment variables by executing the following lines in the terminal:
export ABI_HOME=Replace_with_absolute_path_to_abinit_top_level_dir # Change this line
export PATH=$ABI_HOME/src/98_main/:$PATH # Do not change this line: path to executable
export ABI_TESTS=$ABI_HOME/tests/ # Do not change this line: path to tests dir
export ABI_PSPDIR=$ABI_TESTS/Psps_for_tests/ # Do not change this line: path to pseudos dir
Examples in this tutorial use these shell variables: copy and paste
the code snippets into the terminal (remember to set ABI_HOME first!) or, alternatively,
source the set_abienv.sh
script located in the ~abinit directory:
source ~abinit/set_abienv.sh
The ‘export PATH’ line adds the directory containing the executables to your PATH so that you can invoke the code by simply typing abinit in the terminal instead of providing the absolute path.
To execute the tutorials, create a working directory (Work*
) and
copy there the input files of the lesson.
Most of the tutorials do not rely on parallelism (except specific tutorials on parallelism). However you can run most of the tutorial examples in parallel with MPI, see the topic on parallelism.
Brief theoretical introduction¶
In order to perform Time-Dependent Density Functional Theory calculations (TDDFT) of electronic excitations and oscillator strengths, in the Casida’s approach, you should first have some theoretical background. TDDFT was first developed in the eighties, but the direct calculation of electronic excitations was introduced much later, by Casida and co-workers. A comprehensive description of the underlying formalism is given in
"Time-Dependent Density Functional Response Theory of Molecular Systems:
Theory, Computational Methods, and Functionals"
M. E. Casida
in Recent Development and Applications of Modern Density Functional Theory,
edited by J.M. Seminario (Elsevier, Amsterdam, 1996), p. 391.
<http://dx.doi.org/10.1016/S1380-7323(96)80093-8>
However this reference might be hard to get, that is why we have based the tutorial instead on the following (also early) papers: [Casida1998], [Casida1998a], and [Vasiliev1998].
The first of these papers, [Casida1998], will be used as main reference for our tutorial.
From these papers, you will learn that a TDDFT calculation of electronic excitation energies start first from a usual ground-state calculation, with a chosen XC functional. Such a calculation produces a spectrum of Kohn-Sham electronic energies. It is widely known that differences between occupied and unoccupied Kohn-Sham electronic energies resemble excitation energies (the difference in energy between an excited state and the ground state), although there is no real theoretical justification for this similarity.
These differences between Kohn-Sham electronic energies are the starting point of Casida’s approach: in the framework of TDDFT, their square give the main contribution to the diagonal part of a matrix, whose eigenvalues will be the square of the excitation energies. One has to add to the diagonal matrix made from the squares of Kohn-Sham energy differences, a coupling matrix, whose elements are four-wavefunction integrals of the Coulomb and exchange-correlation kernel. The exchange-correlation kernel contribution will differ in the spin-singlet and in the spin-triplet states, this being the only difference between spin-singlet and spin-triplet states. See Eqs.(1.3) and (1.4) of [Casida1998a], and Eqs.(1-2) of [Vasiliev1998].
The construction of the coupling matrix can be done on the basis of an exchange-correlation kernel that is derived from the exchange-correlation functional used for the ground-state, but this is not a requirement of the theory, since such a correspondence only holds for the exact functional. In practice, the approximation to the XC potential and the one to the XC kernel are often different. See section III of [Casida1998].
A big drawback of the currently known XC potentials and XC kernels is observed when the system is infinite in at least one direction (e.g. polymers, slabs, or solids). In this case, the addition of the coupling matrix is unable to shift the edges of the Kohn-Sham band structure (each four-wavefunction integral becomes too small). There is only a redistribution of the oscillator strengths. In particular, the DFT band gap problem is NOT solved by TDDFT. Also, the Casida’s approach relies on the discreteness of the Kohn-Sham spectrum.
Thus, the TDDFT approach to electronic excitation energies in ABINIT is ONLY valid for finite systems (atoms, molecules, clusters). Actually, only one k-point can be used, and a “box center” must be defined, close to the center of gravity of the system.
The Casida formalism also gives access to the oscillator strengths, needed to obtain the frequency-dependent polarizability, and corresponding optical spectrum. In the ABINIT implementation, the oscillators strengths are given as a second-rank tensor, in cartesian coordinates, as well as the average over all directions usually used for molecules and clusters. It is left to the user to generate the polarisability spectrum, according to e.g. Eq.(1.2) of [Casida1998a].
One can also combine the ground state total energy with the electronic excitation energies to obtain Born-Oppenheimer potential energy curves for excited states. This is illustrated for formaldehyde in [Casida1998a].
Given its simplicity, and the relatively modest CPU cost of this type of calculation, Casida’s approach enjoys a wide popularity. There has been hundreds of papers published on the basis of methodology. Still, its accuracy might be below the expectations, as you will see. As often, test this method to see if it suits your needs, and read the recent literature …
A first computation of electronic excitation energies and oscillator strengths, for N_2¶
We will now compute and analyse the excitation energies of the diatomic molecule N_2. This is a rather simple system, with cylindrical symmetry, allowing interesting understanding. Although we will suppose that you are familiarized with quantum numbers for diatomic molecules, this should not play an important role in the understanding of the way to use Abinit implementation of Casida’s formalism.
Before beginning, you might consider to work in a different subdirectory as for the other tutorials. Why not Work_tddft? Copy the file ttddft_1.abi in Work_tddft:
cd $ABI_TESTS/tutorial/Input
mkdir Work_tddft
cd Work_tddft
cp ../ttddft_1.abi .
So, issue now:
abinit ttddft_1.abi > log &
The computation is quite fast: about 3 secs on a 2.8 GHz PC. Let’s examine the input file ttddft_1.abi.
# N2 system. # Excited state computation, using LDA/TDLDA ndtset 2 #DATASET 1 SCF tolwfr1 1.0d-15 # Well converged, giving accurate density nband1 5 prtden1 1 #DATASET 2 TDDFT iscf2 -1 tolwfr2 1.0d-9 # The additional bands do no need to be so well converged. nband2 12 # We will change this value to 30, 60, 100 and 150 for the convergence study getden2 1 getwfk2 1 #In this specific example, the number of bands is determined manually above, and there is no "buffer" band to be taken into account. nbdbuf 0 #Definition of the unit cell, also boxcenter for the specificity of TDDFT acell 6 2*5 Angstrom # We will change these values ifor the convergence study, to : 8 2*7 ; 10 2*9 ; 12 2*11 ; 14 2*13 ; 16 2*15 ; 20 2*19 boxcenter 3*0.0d0 #Definition of the atom types and pseudopotentials ntypat 1 znucl 7 pp_dirpath "$ABI_PSPDIR" # This is the path to the directory were pseudopotentials for tests are stored pseudos "Pseudodojo_nc_sr_04_pw_standard_psp8/N.psp8" # Name and location of the pseudopotential # This pseudopotential comes from the pseudodojo site http://www.pseudo-dojo.org/ (NC SR LDA standard), # and was generated using the LDA exchange-correlation functional (PW=Perdew-Wang, ixc=-1012). # By default, abinit uses the same exchange-correlation functional than the one of the input pseudopotential(s) ixc 7 # In the TDDFT implementation of ABINIT, only selected native XC functionals can be used. # The ixc=7 is equivalent to ixc=-1012, but is allowed for TDDFT, while ixc=-1012 is not allowed. #Definition of the atoms natom 2 typat 1 1 xcart -0.54875 0 0 0.54875 0 0 Angstrom # Distance 1.0975 Angstrom, fixed at experimental value according to # Tables of Interatomic Distances and Configuration in Molecules and Ions, L.E. Sutton, ed., London: The Chemical Society, 1958. #Numerical parameters of the calculation : planewave basis set and k point grid ecut 25 # We will change this value to 30, 35 and 45 for the convergence study kptopt 0 # Enter the k points manually, and by default, only one k point, at Gamma #Parameters for the SCF procedure diemac 1.0d0 diemix 0.5d0 nstep 25 ############################################################## # This section is used only for regression testing of ABINIT # ############################################################## #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% ttddft_1.abo, tolnlines= 6, tolabs= 1.010e-02, tolrel= 4.000e-01 #%% [paral_info] #%% max_nprocs = 1 #%% [extra_info] #%% authors = Unknown #%% keywords = TDDFT #%% description = #%% N2 system. #%% Excited state computation, using LDA/TDLDA #%%<END TEST_INFO>
There are two datasets: the first one corresponds to a typical ground-state calculation, with only occupied bands. The density and wavefunctions are written, for use in the second data set. The second dataset is the one where the TDDFT calculation is done. Moreover, the non-self-consistent calculation of the occupied eigenfunctions and corresponding eigenenergies is also accomplished. This is obtained by setting iscf to -1.
Please, take now some time to read the information about this value of iscf, and the few input variables that acquire some meaning in this context (namely, boxcenter, td_mexcit, and td_maxene). Actually, this is most of the information that should be known to use the TDDFT in ABINIT!
You will note that we have 5 occupied bands (defined for dataset 1), and that we add 7 unoccupied bands in the dataset 2, to obtain a total of 12 bands. The box is not very large (6x5x5 Angstrom), the cutoff is quite reasonable, 25 Hartree), and as requested for the Casida’s formalism, only one k point is used. We are using the Perdew-Wang 92 LDA functional for both the self- consistent and non-self-consistent calculations (ixc = -1012), as deduced by abinit by looking at the pseudopotential file..
We can now examine the output file ttddft_1.abo.
.Version 9.3.3 of ABINIT .(MPI version, prepared for a x86_64_linux_gnu9.3 computer) .Copyright (C) 1998-2024 ABINIT group . ABINIT comes with ABSOLUTELY NO WARRANTY. It is free software, and you are welcome to redistribute it under certain conditions (GNU General Public License, see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt). ABINIT is a project of the Universite Catholique de Louvain, Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt . Please read https://docs.abinit.org/theory/acknowledgments for suggested acknowledgments of the ABINIT effort. For more information, see https://www.abinit.org . .Starting date : Thu 31 Dec 2020. - ( at 11h28 ) - input file -> /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk_beauty/tests/TestBot_MPI1/tutorial_ttddft_1/ttddft_1.abi - output file -> ttddft_1.abo - root for input files -> ttddft_1i - root for output files -> ttddft_1o DATASET 1 : space group P4/m m m (#123); Bravais tP (primitive tetrag.) ================================================================================ Values of the parameters that define the memory need for DATASET 1. intxc = 0 ionmov = 0 iscf = 7 lmnmax = 4 lnmax = 4 mgfft = 54 mpssoang = 2 mqgrid = 3001 natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 16 n1xccc = 2501 ntypat = 1 occopt = 1 xclevel = 1 - mband = 5 mffmem = 1 mkmem = 1 mpw = 3031 nfft = 109350 nkpt = 1 ================================================================================ P This job should need less than 31.660 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.233 Mbytes ; DEN or POT disk file : 0.836 Mbytes. ================================================================================ DATASET 2 : space group P4/m m m (#123); Bravais tP (primitive tetrag.) ================================================================================ Values of the parameters that define the memory need for DATASET 2. intxc = 0 ionmov = 0 iscf = -1 lmnmax = 4 lnmax = 4 mgfft = 54 mpssoang = 2 mqgrid = 5105 natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1 nsppol = 1 nsym = 16 n1xccc = 2501 ntypat = 1 occopt = 1 xclevel = 1 - mband = 12 mffmem = 1 mkmem = 1 mpw = 3031 nfft = 109350 nkpt = 1 For the susceptibility and dielectric matrices, or tddft : mgfft = 54 nbnd_in_blk= 6 nfft = 109350 npw = 48395 ================================================================================ P This job should need less than 26.659 Mbytes of memory. Rough estimation (10% accuracy) of disk space for files : _ WF disk file : 0.557 Mbytes ; DEN or POT disk file : 0.836 Mbytes. ================================================================================ -------------------------------------------------------------------------------- ------------- Echo of variables that govern the present computation ------------ -------------------------------------------------------------------------------- - - outvars: echo of selected default values - iomode0 = 0 , fftalg0 =312 , wfoptalg0 = 0 - - outvars: echo of global parameters not present in the input file - max_nthreads = 0 - -outvars: echo values of preprocessed input variables -------- acell 1.1338356797E+01 9.4486306644E+00 9.4486306644E+00 Bohr amu 1.40067400E+01 boxcenter 0.00000000E+00 0.00000000E+00 0.00000000E+00 diecut1 2.20000000E+00 Hartree diecut2 1.00000000E+02 Hartree diemac 1.00000000E+00 diemix 5.00000000E-01 ecut 2.50000000E+01 Hartree - fftalg 312 getden1 0 getden2 1 getwfk1 0 getwfk2 1 iscf1 7 iscf2 -1 istwfk 2 ixc 7 jdtset 1 2 kptopt 0 P mkmem 1 natom 2 nband1 5 nband2 12 ndtset 2 ngfft 54 45 45 nkpt 1 nstep 25 nsym 16 ntypat 1 occ1 2.000000 2.000000 2.000000 2.000000 2.000000 occ2 2.000000 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 spgroup 123 symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0 tolwfr1 1.00000000E-15 tolwfr2 1.00000000E-09 typat 1 1 xangst -5.4875000000E-01 0.0000000000E+00 0.0000000000E+00 5.4875000000E-01 0.0000000000E+00 0.0000000000E+00 xcart -1.0369872154E+00 0.0000000000E+00 0.0000000000E+00 1.0369872154E+00 0.0000000000E+00 0.0000000000E+00 xred -9.1458333333E-02 0.0000000000E+00 0.0000000000E+00 9.1458333333E-02 0.0000000000E+00 0.0000000000E+00 znucl 7.00000 ================================================================================ chkinp: Checking input parameters for consistency, jdtset= 1. chkinp: Checking input parameters for consistency, jdtset= 2. ================================================================================ == DATASET 1 ================================================================== - mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated) --- !DatasetInfo iteration_state: {dtset: 1, } dimensions: {natom: 2, nkpt: 1, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 3031, } cutoff_energies: {ecut: 25.0, pawecutdg: -1.0, } electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, } meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, } ... Exchange-correlation functional for the present dataset will be: LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7 Citation for XC functional: J.P.Perdew and Y.Wang, PRB 45, 13244 (1992) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 11.3383568 0.0000000 0.0000000 G(1)= 0.0881962 0.0000000 0.0000000 R(2)= 0.0000000 9.4486307 0.0000000 G(2)= 0.0000000 0.1058354 0.0000000 R(3)= 0.0000000 0.0000000 9.4486307 G(3)= 0.0000000 0.0000000 0.1058354 Unit cell volume ucvol= 1.0122502E+03 bohr^3 Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 54 45 45 ecut(hartree)= 25.000 => boxcut(ratio)= 2.06894 --- Pseudopotential description ------------------------------------------------ - pspini: atom type 1 psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk_beauty/tests/Psps_for_tests/Pseudodojo_nc_sr_04_pw_standard_psp8/N.psp8 - pspatm: opening atomic psp file /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk_beauty/tests/Psps_for_tests/Pseudodojo_nc_sr_04_pw_standard_psp8/N.psp8 - N ONCVPSP-3.3.0 r_core= 1.20551 1.35824 - 7.00000 5.00000 171101 znucl, zion, pspdat 8 -1012 1 4 600 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well 5.99000000000000 4.00000000000000 0.00000000000000 rchrg,fchrg,qchrg nproj 2 2 extension_switch 1 pspatm : epsatm= 5.30777697 --- l ekb(1:nproj) --> 0 7.408032 0.617798 1 -4.361519 -1.032581 pspatm: atomic psp has been read and splines computed 1.06155539E+02 ecore*ucvol(ha*bohr**3) -------------------------------------------------------------------------------- _setup2: Arith. and geom. avg. npw (full set) are 6061.000 6061.000 ================================================================================ --- !BeginCycle iteration_state: {dtset: 1, } solver: {iscf: 7, nstep: 25, nline: 4, wfoptalg: 0, } tolerances: {tolwfr: 1.00E-15, } ... iter Etot(hartree) deltaE(h) residm vres2 ETOT 1 -20.322013775692 -2.032E+01 1.602E-01 4.033E+01 ETOT 2 -20.651871502905 -3.299E-01 1.115E-04 9.405E+01 ETOT 3 -20.663757444290 -1.189E-02 6.145E-05 4.494E+01 ETOT 4 -20.674579878808 -1.082E-02 2.098E-04 1.462E+00 ETOT 5 -20.674870330932 -2.905E-04 7.724E-06 5.282E-02 ETOT 6 -20.674883326903 -1.300E-05 3.102E-07 4.366E-04 ETOT 7 -20.674883390579 -6.368E-08 1.905E-09 2.860E-05 ETOT 8 -20.674883395646 -5.067E-09 4.287E-11 6.518E-06 ETOT 9 -20.674883396998 -1.352E-09 4.245E-11 7.191E-08 ETOT 10 -20.674883397012 -1.463E-11 9.174E-13 4.466E-09 ETOT 11 -20.674883397012 7.390E-13 1.146E-14 2.677E-10 ETOT 12 -20.674883397010 1.243E-12 9.756E-16 1.445E-11 At SCF step 12 max residual= 9.76E-16 < tolwfr= 1.00E-15 =>converged. Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= 1.37624165E-04 sigma(3 2)= 0.00000000E+00 sigma(2 2)= 1.16859676E-04 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 1.16859676E-04 sigma(2 1)= 0.00000000E+00 --- !ResultsGS iteration_state: {dtset: 1, } comment : Summary of ground state results lattice_vectors: - [ 11.3383568, 0.0000000, 0.0000000, ] - [ 0.0000000, 9.4486307, 0.0000000, ] - [ 0.0000000, 0.0000000, 9.4486307, ] lattice_lengths: [ 11.33836, 9.44863, 9.44863, ] lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12) lattice_volume: 1.0122502E+03 convergence: {deltae: 1.243E-12, res2: 1.445E-11, residm: 9.756E-16, diffor: null, } etotal : -2.06748834E+01 entropy : 0.00000000E+00 fermie : -3.46636305E-01 cartesian_stress_tensor: # hartree/bohr^3 - [ 1.37624165E-04, 0.00000000E+00, 0.00000000E+00, ] - [ 0.00000000E+00, 1.16859676E-04, 0.00000000E+00, ] - [ 0.00000000E+00, 0.00000000E+00, 1.16859676E-04, ] pressure_GPa: -3.6418E+00 xred : - [ -9.1458E-02, 0.0000E+00, 0.0000E+00, N] - [ 9.1458E-02, 0.0000E+00, 0.0000E+00, N] cartesian_forces: # hartree/bohr - [ 6.07649735E-03, -0.00000000E+00, -0.00000000E+00, ] - [ -6.07649735E-03, -0.00000000E+00, -0.00000000E+00, ] force_length_stats: {min: 6.07649735E-03, max: 6.07649735E-03, mean: 6.07649735E-03, } ... Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 5.81214373 2 2.00000 5.81214373 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 48.745E-17; max= 97.564E-17 reduced coordinates (array xred) for 2 atoms -0.091458333333 0.000000000000 0.000000000000 0.091458333333 0.000000000000 0.000000000000 rms dE/dt= 3.9778E-02; max dE/dt= 6.8897E-02; dE/dt below (all hartree) 1 -0.068897495041 0.000000000000 0.000000000000 2 0.068897495041 0.000000000000 0.000000000000 cartesian coordinates (angstrom) at end: 1 -0.54875000000000 0.00000000000000 0.00000000000000 2 0.54875000000000 0.00000000000000 0.00000000000000 cartesian forces (hartree/bohr) at end: 1 0.00607649735079 -0.00000000000000 -0.00000000000000 2 -0.00607649735079 -0.00000000000000 -0.00000000000000 frms,max,avg= 3.5082674E-03 6.0764974E-03 0.000E+00 0.000E+00 0.000E+00 h/b cartesian forces (eV/Angstrom) at end: 1 0.31246603075950 -0.00000000000000 -0.00000000000000 2 -0.31246603075950 -0.00000000000000 -0.00000000000000 frms,max,avg= 1.8040235E-01 3.1246603E-01 0.000E+00 0.000E+00 0.000E+00 e/A length scales= 11.338356797314 9.448630664428 9.448630664428 bohr = 6.000000000000 5.000000000000 5.000000000000 angstroms prteigrs : about to open file ttddft_1o_DS1_EIG Fermi (or HOMO) energy (hartree) = -0.34664 Average Vxc (hartree)= -0.11403 Eigenvalues (hartree) for nkpt= 1 k points: kpt# 1, nband= 5, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord) -1.00899 -0.45706 -0.40017 -0.40017 -0.34664 --- !EnergyTerms iteration_state : {dtset: 1, } comment : Components of total free energy in Hartree kinetic : 1.34821608084111E+01 hartree : 1.43996777287222E+01 xc : -5.81608366176205E+00 Ewald energy : -1.79564520286976E+00 psp_core : 1.04870851821856E-01 local_psp : -3.92188284527287E+01 non_local_psp : -1.83103546860504E+00 total_energy : -2.06748833970104E+01 total_energy_eV : -5.62592188376790E+02 band_energy : -5.22604318855441E+00 ... Cartesian components of stress tensor (hartree/bohr^3) sigma(1 1)= 1.37624165E-04 sigma(3 2)= 0.00000000E+00 sigma(2 2)= 1.16859676E-04 sigma(3 1)= 0.00000000E+00 sigma(3 3)= 1.16859676E-04 sigma(2 1)= 0.00000000E+00 -Cartesian components of stress tensor (GPa) [Pressure= -3.6418E+00 GPa] - sigma(1 1)= 4.04904204E+00 sigma(3 2)= 0.00000000E+00 - sigma(2 2)= 3.43812978E+00 sigma(3 1)= 0.00000000E+00 - sigma(3 3)= 3.43812978E+00 sigma(2 1)= 0.00000000E+00 ================================================================================ == DATASET 2 ================================================================== - mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated) --- !DatasetInfo iteration_state: {dtset: 2, } dimensions: {natom: 2, nkpt: 1, mband: 12, nsppol: 1, nspinor: 1, nspden: 1, mpw: 3031, } cutoff_energies: {ecut: 25.0, pawecutdg: -1.0, } electrons: {nelect: 1.00000000E+01, charge: 0.00000000E+00, occopt: 1.00000000E+00, tsmear: 1.00000000E-02, } meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -1, paral_kgb: 0, } ... mkfilename : getwfk/=0, take file _WFK from output of DATASET 1. mkfilename : getden/=0, take file _DEN from output of DATASET 1. Exchange-correlation functional for the present dataset will be: LDA: Perdew-Wang 92 LSD fit to Ceperley-Alder data - ixc=7 Citation for XC functional: J.P.Perdew and Y.Wang, PRB 45, 13244 (1992) Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1): R(1)= 11.3383568 0.0000000 0.0000000 G(1)= 0.0881962 0.0000000 0.0000000 R(2)= 0.0000000 9.4486307 0.0000000 G(2)= 0.0000000 0.1058354 0.0000000 R(3)= 0.0000000 0.0000000 9.4486307 G(3)= 0.0000000 0.0000000 0.1058354 Unit cell volume ucvol= 1.0122502E+03 bohr^3 Angles (23,13,12)= 9.00000000E+01 9.00000000E+01 9.00000000E+01 degrees getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 54 45 45 ecut(hartree)= 25.000 => boxcut(ratio)= 2.06894 -------------------------------------------------------------------------------- -inwffil : will read wavefunctions from disk file ttddft_1o_DS1_WFK ================================================================================ prteigrs : about to open file ttddft_1o_DS2_EIG Non-SCF case, kpt 1 ( 0.00000 0.00000 0.00000), residuals and eigenvalues= 6.79E-16 3.95E-16 4.50E-16 4.77E-16 1.04E-15 6.56E-10 4.35E-10 1.80E-10 6.75E-10 4.39E-10 3.67E-10 6.58E-10 -1.0090E+00 -4.5706E-01 -4.0017E-01 -4.0017E-01 -3.4664E-01 -4.0142E-02 -4.0142E-02 3.7640E-03 1.1572E-01 1.4946E-01 1.6040E-01 2.0039E-01 *** TDDFT : computation of excited states *** Splitting of 12 states in 5 occupied states, and 7 unoccupied states, giving 35 excitations. Ground state total energy (Ha) : -2.06748834E+01 Kohn-Sham energy differences, corresponding total energies and oscillator strengths (X,Y,Z and average)- (oscillator strengths smaller than 1.e-6 are set to zero) Transition (Ha) and (eV) Tot. Ene. (Ha) Aver XX YY ZZ 5-> 6 3.06494E-01 8.34013E+00 -2.03684E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 5-> 7 3.06494E-01 8.34013E+00 -2.03684E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 5-> 8 3.50400E-01 9.53488E+00 -2.03245E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 4-> 6 3.60026E-01 9.79682E+00 -2.03149E+01 5.5535E-01 1.67E+00 0.00E+00 0.00E+00 3-> 6 3.60026E-01 9.79682E+00 -2.03149E+01 3.7773E-03 1.13E-02 0.00E+00 0.00E+00 4-> 7 3.60026E-01 9.79682E+00 -2.03149E+01 3.7773E-03 1.13E-02 0.00E+00 0.00E+00 3-> 7 3.60026E-01 9.79682E+00 -2.03149E+01 5.5535E-01 1.67E+00 0.00E+00 0.00E+00 4-> 8 4.03933E-01 1.09916E+01 -2.02710E+01 3.7976E-02 0.00E+00 1.14E-01 0.00E+00 3-> 8 4.03933E-01 1.09916E+01 -2.02710E+01 3.7976E-02 0.00E+00 0.00E+00 1.14E-01 2-> 6 4.16919E-01 1.13449E+01 -2.02580E+01 3.1925E-01 0.00E+00 9.51E-01 6.47E-03 2-> 7 4.16919E-01 1.13449E+01 -2.02580E+01 3.1925E-01 0.00E+00 6.47E-03 9.51E-01 2-> 8 4.60825E-01 1.25397E+01 -2.02141E+01 1.0411E-03 3.12E-03 0.00E+00 0.00E+00 5-> 9 4.62360E-01 1.25815E+01 -2.02125E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 5-> 10 4.96096E-01 1.34994E+01 -2.01788E+01 1.2415E-01 3.72E-01 0.00E+00 0.00E+00 5-> 11 5.07037E-01 1.37972E+01 -2.01678E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 4-> 9 5.15892E-01 1.40381E+01 -2.01590E+01 5.2064E-02 0.00E+00 1.56E-01 0.00E+00 3-> 9 5.15892E-01 1.40381E+01 -2.01590E+01 5.2063E-02 0.00E+00 0.00E+00 1.56E-01 5-> 12 5.47022E-01 1.48852E+01 -2.01279E+01 1.6440E-01 0.00E+00 3.98E-03 4.89E-01 4-> 10 5.49628E-01 1.49561E+01 -2.01253E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 3-> 10 5.49628E-01 1.49561E+01 -2.01253E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 4-> 11 5.60570E-01 1.52539E+01 -2.01143E+01 1.0046E-01 0.00E+00 3.01E-01 0.00E+00 3-> 11 5.60570E-01 1.52539E+01 -2.01143E+01 1.0046E-01 0.00E+00 0.00E+00 3.01E-01 2-> 9 5.72785E-01 1.55863E+01 -2.01021E+01 5.1179E-02 1.54E-01 0.00E+00 0.00E+00 4-> 12 6.00554E-01 1.63419E+01 -2.00743E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 3-> 12 6.00554E-01 1.63419E+01 -2.00743E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 2-> 10 6.06521E-01 1.65043E+01 -2.00684E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 2-> 11 6.17462E-01 1.68020E+01 -2.00574E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 2-> 12 6.57447E-01 1.78900E+01 -2.00174E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 1-> 6 9.68844E-01 2.63636E+01 -1.97060E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 1-> 7 9.68844E-01 2.63636E+01 -1.97060E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 1-> 8 1.01275E+00 2.75584E+01 -1.96621E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 1-> 9 1.12471E+00 3.06049E+01 -1.95502E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 1-> 10 1.15845E+00 3.15229E+01 -1.95164E+01 5.8583E-04 1.76E-03 0.00E+00 0.00E+00 1-> 11 1.16939E+00 3.18207E+01 -1.95055E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00 1-> 12 1.20937E+00 3.29087E+01 -1.94655E+01 4.0611E-04 0.00E+00 9.83E-06 1.21E-03 Sum of osc. strength : 2.479500E+00 TDDFT singlet excitation energies (at most 20 of them are printed), and corresponding total energies. Excit# (Ha) and (eV) total energy (Ha) major contributions 1 3.45362E-01 9.39779E+00 -2.032952E+01 1.00( 5-> 7) 0.00( 1-> 7) 2 3.45434E-01 9.39975E+00 -2.032945E+01 1.00( 5-> 6) 0.00( 1-> 6) 3 3.60026E-01 9.79681E+00 -2.031486E+01 0.50( 3-> 6) 0.50( 4-> 7) 4 3.68693E-01 1.00326E+01 -2.030619E+01 0.99( 5-> 8) 0.00( 2-> 10) 5 3.83765E-01 1.04428E+01 -2.029112E+01 0.50( 4-> 7) 0.50( 3-> 6) 6 3.83798E-01 1.04437E+01 -2.029108E+01 0.50( 4-> 6) 0.50( 3-> 7) 7 4.03285E-01 1.09740E+01 -2.027160E+01 0.99( 3-> 8) 0.01( 4-> 8) 8 4.03304E-01 1.09745E+01 -2.027158E+01 0.99( 4-> 8) 0.01( 3-> 8) 9 4.59051E-01 1.24914E+01 -2.021583E+01 0.91( 2-> 8) 0.04( 3-> 7) 10 4.61447E-01 1.25566E+01 -2.021344E+01 1.00( 5-> 9) 0.00( 3-> 12) 11 4.92032E-01 1.33889E+01 -2.018285E+01 0.98( 5-> 10) 0.01( 3-> 7) 12 5.01360E-01 1.36427E+01 -2.017352E+01 1.00( 5-> 11) 0.00( 3-> 12) 13 5.06717E-01 1.37885E+01 -2.016817E+01 0.57( 2-> 7) 0.37( 3-> 9) 14 5.07281E-01 1.38038E+01 -2.016760E+01 0.54( 2-> 6) 0.41( 4-> 9) 15 5.20474E-01 1.41628E+01 -2.015441E+01 0.61( 3-> 9) 0.29( 2-> 7) 16 5.21330E-01 1.41861E+01 -2.015355E+01 0.58( 4-> 9) 0.34( 2-> 6) 17 5.42047E-01 1.47499E+01 -2.013284E+01 0.95( 5-> 12) 0.04( 3-> 11) 18 5.50161E-01 1.49706E+01 -2.012472E+01 1.00( 3-> 10) 0.00( 5-> 7) 19 5.50161E-01 1.49706E+01 -2.012472E+01 1.00( 4-> 10) 0.00( 5-> 6) 20 5.68061E-01 1.54577E+01 -2.010682E+01 0.87( 4-> 11) 0.12( 2-> 6) Oscillator strengths : (elements smaller than 1.e-6 are set to zero) Excit# (Ha) Average XX YY ZZ XY XZ YZ 1 3.45362E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 2 3.45434E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 3 3.60026E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 4 3.68693E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 5 3.83765E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 6 3.83798E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 7 4.03285E-01 5.881E-02 0.000E+00 1.409E-03 1.750E-01 0.00E+00 0.00E+00 -1.57E-02 8 4.03304E-01 5.685E-02 0.000E+00 1.692E-01 1.361E-03 0.00E+00 0.00E+00 1.52E-02 9 4.59051E-01 8.613E-02 2.584E-01 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 10 4.61447E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 11 4.92032E-01 2.355E-01 7.065E-01 0.000E+00 0.000E+00 -1.07E-05 0.00E+00 0.00E+00 12 5.01360E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 13 5.06717E-01 3.056E-02 0.000E+00 7.616E-04 9.091E-02 0.00E+00 0.00E+00 -8.32E-03 14 5.07281E-01 3.518E-02 0.000E+00 1.047E-01 8.729E-04 0.00E+00 0.00E+00 9.56E-03 15 5.20474E-01 1.096E-01 0.000E+00 2.620E-03 3.263E-01 0.00E+00 0.00E+00 -2.92E-02 16 5.21330E-01 1.648E-01 0.000E+00 4.903E-01 3.954E-03 -2.39E-06 0.00E+00 4.40E-02 17 5.42047E-01 1.661E-01 0.000E+00 4.022E-03 4.942E-01 0.00E+00 3.81E-06 -4.46E-02 18 5.50161E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 19 5.50161E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 20 5.68061E-01 2.530E-01 0.000E+00 7.527E-01 6.120E-03 3.36E-06 0.00E+00 6.79E-02 21 5.68336E-01 3.095E-01 0.000E+00 7.490E-03 9.209E-01 0.00E+00 -4.30E-06 -8.31E-02 22 5.71205E-01 2.657E-02 7.970E-02 0.000E+00 0.000E+00 0.00E+00 -1.07E-06 0.00E+00 23 5.98731E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 24 6.05925E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 25 6.15739E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 26 6.38328E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 27 6.56603E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 28 7.06968E-01 9.383E-01 2.815E+00 0.000E+00 0.000E+00 5.98E-06 1.24E-05 0.00E+00 29 1.01481E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 30 1.01910E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 31 1.01922E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 32 1.13282E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 33 1.16465E+00 8.741E-03 2.622E-02 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 34 1.17054E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 35 1.21774E+00 6.715E-06 0.000E+00 0.000E+00 1.998E-05 0.00E+00 0.00E+00 -1.80E-06 Sum of osc. strength : 2.479500E+00 Cauchy coeffs (au) : ( -2)-> 7.632E+00, ( -4)-> 2.638E+01, ( -6)-> 1.018E+02 (-8)-> 4.345E+02, (-10)-> 2.025E+03, (-12)-> 1.015E+04, (-14)-> 5.393E+04 TDDFT triplet excitation energies (at most 20 of them are printed), and corresponding total energies. Excit# (Ha) and (eV) total energy (Ha) major contributions 1 2.84779E-01 7.74923E+00 -2.039010E+01 1.00( 5-> 7) 0.00( 5-> 6) 2 2.84781E-01 7.74928E+00 -2.039010E+01 1.00( 5-> 6) 0.00( 5-> 7) 3 2.97188E-01 8.08689E+00 -2.037770E+01 0.50( 3-> 7) 0.50( 4-> 6) 4 3.30296E-01 8.98780E+00 -2.034459E+01 0.50( 4-> 7) 0.50( 3-> 6) 5 3.30344E-01 8.98913E+00 -2.034454E+01 0.50( 4-> 6) 0.50( 3-> 7) 6 3.43692E-01 9.35234E+00 -2.033119E+01 1.00( 5-> 8) 0.00( 2-> 10) 7 3.60026E-01 9.79681E+00 -2.031486E+01 0.50( 3-> 6) 0.50( 4-> 7) 8 3.85278E-01 1.04839E+01 -2.028961E+01 0.91( 2-> 7) 0.09( 3-> 8) 9 3.85310E-01 1.04848E+01 -2.028957E+01 0.91( 2-> 6) 0.08( 4-> 8) 10 4.02530E-01 1.09534E+01 -2.027235E+01 0.91( 3-> 8) 0.09( 2-> 7) 11 4.02566E-01 1.09544E+01 -2.027232E+01 0.91( 4-> 8) 0.09( 2-> 6) 12 4.55624E-01 1.23982E+01 -2.021926E+01 0.98( 2-> 8) 0.02( 5-> 10) 13 4.57947E-01 1.24614E+01 -2.021694E+01 1.00( 5-> 9) 0.00( 2-> 10) 14 4.91127E-01 1.33642E+01 -2.018376E+01 0.98( 5-> 10) 0.02( 2-> 8) 15 5.03606E-01 1.37038E+01 -2.017128E+01 1.00( 5-> 11) 0.00( 3-> 12) 16 5.13163E-01 1.39639E+01 -2.016172E+01 0.99( 3-> 9) 0.01( 4-> 9) 17 5.13168E-01 1.39640E+01 -2.016172E+01 0.99( 4-> 9) 0.01( 3-> 9) 18 5.42540E-01 1.47633E+01 -2.013234E+01 1.00( 5-> 12) 0.00( 3-> 11) 19 5.47095E-01 1.48872E+01 -2.012779E+01 0.99( 3-> 10) 0.01( 4-> 10) 20 5.47158E-01 1.48889E+01 -2.012773E+01 0.99( 4-> 10) 0.01( 3-> 10) Oscillator strengths : (elements smaller than 1.e-6 are set to zero) Excit# (Ha) Average XX YY ZZ XY XZ YZ 1 2.84779E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 2 2.84781E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 3 2.97188E-01 1.105E+00 3.314E+00 0.000E+00 0.000E+00 6.90E-06 -6.27E-06 0.00E+00 4 3.30296E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 5 3.30344E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 6 3.43692E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 7 3.60026E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 8 3.85278E-01 2.343E-01 0.000E+00 5.091E-03 6.980E-01 0.00E+00 0.00E+00 -5.96E-02 9 3.85310E-01 2.379E-01 0.000E+00 7.086E-01 5.176E-03 1.31E-06 0.00E+00 6.06E-02 10 4.02530E-01 1.332E-01 0.000E+00 3.268E-03 3.964E-01 0.00E+00 0.00E+00 -3.60E-02 11 4.02566E-01 1.285E-01 0.000E+00 3.822E-01 3.153E-03 0.00E+00 0.00E+00 3.47E-02 12 4.55624E-01 3.761E-03 1.128E-02 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 13 4.57947E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 14 4.91127E-01 1.353E-01 4.060E-01 0.000E+00 0.000E+00 -1.16E-05 -1.10E-06 0.00E+00 15 5.03606E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 16 5.13163E-01 5.612E-02 0.000E+00 1.793E-03 1.666E-01 0.00E+00 0.00E+00 -1.73E-02 17 5.13168E-01 5.474E-02 0.000E+00 1.625E-01 1.759E-03 0.00E+00 0.00E+00 1.69E-02 18 5.42540E-01 1.742E-01 0.000E+00 4.219E-03 5.184E-01 -1.53E-06 1.70E-05 -4.68E-02 19 5.47095E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 20 5.47158E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 21 5.57047E-01 8.862E-02 0.000E+00 2.637E-01 2.147E-03 0.00E+00 0.00E+00 2.38E-02 22 5.57087E-01 7.620E-02 0.000E+00 1.846E-03 2.267E-01 0.00E+00 -1.14E-06 -2.05E-02 23 5.71017E-01 5.121E-02 1.536E-01 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 24 5.94527E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 25 5.98088E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 26 6.03168E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 27 6.15497E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 28 6.54453E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 29 9.49291E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 30 9.49317E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 31 1.01199E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 32 1.12283E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 33 1.15758E+00 3.491E-04 1.047E-03 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 34 1.16833E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00 35 1.20655E+00 4.573E-04 0.000E+00 1.107E-05 1.361E-03 0.00E+00 0.00E+00 -1.23E-04 Sum of osc. strength : 2.479500E+00 --- !ResultsGS iteration_state: {dtset: 2, } comment : Summary of ground state results lattice_vectors: - [ 11.3383568, 0.0000000, 0.0000000, ] - [ 0.0000000, 9.4486307, 0.0000000, ] - [ 0.0000000, 0.0000000, 9.4486307, ] lattice_lengths: [ 11.33836, 9.44863, 9.44863, ] lattice_angles: [ 90.000, 90.000, 90.000, ] # degrees, (23, 13, 12) lattice_volume: 1.0122502E+03 convergence: {deltae: 0.000E+00, res2: 0.000E+00, residm: 6.751E-10, diffor: 0.000E+00, } etotal : -2.06748834E+01 entropy : 0.00000000E+00 fermie : -3.46636305E-01 cartesian_stress_tensor: null pressure_GPa: null xred : - [ -9.1458E-02, 0.0000E+00, 0.0000E+00, N] - [ 9.1458E-02, 0.0000E+00, 0.0000E+00, N] cartesian_forces: null force_length_stats: {min: null, max: null, mean: null, } ... Integrated electronic density in atomic spheres: ------------------------------------------------ Atom Sphere_radius Integrated_density 1 2.00000 5.81214373 2 2.00000 5.81214373 ================================================================================ ----iterations are completed or convergence reached---- Mean square residual over all n,k,spin= 28.416E-11; max= 67.510E-11 reduced coordinates (array xred) for 2 atoms -0.091458333333 0.000000000000 0.000000000000 0.091458333333 0.000000000000 0.000000000000 cartesian coordinates (angstrom) at end: 1 -0.54875000000000 0.00000000000000 0.00000000000000 2 0.54875000000000 0.00000000000000 0.00000000000000 length scales= 11.338356797314 9.448630664428 9.448630664428 bohr = 6.000000000000 5.000000000000 5.000000000000 angstroms prteigrs : about to open file ttddft_1o_DS2_EIG Eigenvalues (hartree) for nkpt= 1 k points: kpt# 1, nband= 12, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord) -1.00899 -0.45706 -0.40017 -0.40017 -0.34664 -0.04014 -0.04014 0.00376 0.11572 0.14946 0.16040 0.20039 == END DATASET(S) ============================================================== ================================================================================ -outvars: echo values of variables after computation -------- acell 1.1338356797E+01 9.4486306644E+00 9.4486306644E+00 Bohr amu 1.40067400E+01 boxcenter 0.00000000E+00 0.00000000E+00 0.00000000E+00 diecut1 2.20000000E+00 Hartree diecut2 1.00000000E+02 Hartree diemac 1.00000000E+00 diemix 5.00000000E-01 ecut 2.50000000E+01 Hartree etotal1 -2.0674883397E+01 fcart1 6.0764973508E-03 -0.0000000000E+00 -0.0000000000E+00 -6.0764973508E-03 -0.0000000000E+00 -0.0000000000E+00 - fftalg 312 getden1 0 getden2 1 getwfk1 0 getwfk2 1 iscf1 7 iscf2 -1 istwfk 2 ixc 7 jdtset 1 2 kptopt 0 P mkmem 1 natom 2 nband1 5 nband2 12 ndtset 2 ngfft 54 45 45 nkpt 1 nstep 25 nsym 16 ntypat 1 occ1 2.000000 2.000000 2.000000 2.000000 2.000000 occ2 2.000000 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 spgroup 123 strten1 1.3762416472E-04 1.1685967574E-04 1.1685967574E-04 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00 symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1 -1 0 0 0 -1 0 0 0 1 1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 -1 -1 0 0 0 1 0 0 0 1 -1 0 0 0 1 0 0 0 -1 1 0 0 0 -1 0 0 0 1 1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 -1 0 1 0 1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0 0 0 1 0 1 0 -1 0 0 0 0 1 0 -1 0 1 0 0 0 0 -1 0 1 0 tolwfr1 1.00000000E-15 tolwfr2 1.00000000E-09 typat 1 1 xangst -5.4875000000E-01 0.0000000000E+00 0.0000000000E+00 5.4875000000E-01 0.0000000000E+00 0.0000000000E+00 xcart -1.0369872154E+00 0.0000000000E+00 0.0000000000E+00 1.0369872154E+00 0.0000000000E+00 0.0000000000E+00 xred -9.1458333333E-02 0.0000000000E+00 0.0000000000E+00 9.1458333333E-02 0.0000000000E+00 0.0000000000E+00 znucl 7.00000 ================================================================================ - Timing analysis has been suppressed with timopt=0 ================================================================================ Suggested references for the acknowledgment of ABINIT usage. The users of ABINIT have little formal obligations with respect to the ABINIT group (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt). However, it is common practice in the scientific literature, to acknowledge the efforts of people that have made the research possible. In this spirit, please find below suggested citations of work written by ABINIT developers, corresponding to implementations inside of ABINIT that you have used in the present run. Note also that it will be of great value to readers of publications presenting these results, to read papers enabling them to understand the theoretical formalism and details of the ABINIT implementation. For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments. - - [1] The Abinit project: Impact, environment and recent developments. - Computer Phys. Comm. 248, 107042 (2020). - X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken, - J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval, - G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier, - J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras, - D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet, - W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins, - H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon, - S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent, - M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig - Comment: the fifth generic paper describing the ABINIT project. - Note that a version of this paper, that is not formatted for Computer Phys. Comm. - is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf . - The licence allows the authors to put it on the Web. - DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020 - - [2] Optimized norm-conserving Vanderbilt pseudopotentials. - D.R. Hamann, Phys. Rev. B 88, 085117 (2013). - Comment: Some pseudopotential generated using the ONCVPSP code were used. - DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2013 - - [3] ABINIT: Overview, and focus on selected capabilities - J. Chem. Phys. 152, 124102 (2020). - A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet, - J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval, - G.Brunin, D.Caliste, M.Cote, - J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras, - D.R.Hamann, G.Hautier, F.Jollet, G. Jomard, - A.Martin, - H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes, - S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent, - M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze. - Comment: a global overview of ABINIT, with focus on selected capabilities . - Note that a version of this paper, that is not formatted for J. Chem. Phys - is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf . - The licence allows the authors to put it on the Web. - DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020 - - [4] Recent developments in the ABINIT software package. - Computer Phys. Comm. 205, 106 (2016). - X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt, - C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval - D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro, - B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi, - Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux, - A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins, - M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese, - A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent, - M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor, - B.Xu, A.Zhou, J.W.Zwanziger. - Comment: the fourth generic paper describing the ABINIT project. - Note that a version of this paper, that is not formatted for Computer Phys. Comm. - is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf . - The licence allows the authors to put it on the Web. - DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016 - - And optionally: - - [5] ABINIT: First-principles approach of materials and nanosystem properties. - Computer Phys. Comm. 180, 2582-2615 (2009). - X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, - D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi - S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, - M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, - M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger - Comment: the third generic paper describing the ABINIT project. - Note that a version of this paper, that is not formatted for Computer Phys. Comm. - is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf . - The licence allows the authors to put it on the Web. - DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009 - - Proc. 0 individual time (sec): cpu= 3.1 wall= 3.1 ================================================================================ Calculation completed. .Delivered 10 WARNINGs and 2 COMMENTs to log file. +Overall time at end (sec) : cpu= 3.1 wall= 3.1
One can jump to the second dataset section, and skip a few non-interesting information, in order to reach the following information:
*** TDDFT : computation of excited states ***
Splitting of 12 bands in 5 occupied bands, and 7 unoccupied bands,
giving 35 excitations.
The matrix that is diagonalized, in the Casida’s formalism, is thus a 35x35 matrix. It will give 35 excitation energies. Then, follows the list of excitation energies, obtained from the difference of Kohn-Sham eigenvalues (occupied and unoccupied), for further reference. They are ordered by increasing energy. In order to analyze the TDDFT as well as experimental data in the next section, let us mention that the Kohn-Sham eigenfunctions in this simulation have the following characteristics:
- The first and fifth states are (non-degenerate) occupied \sigma states (m=0), with even parity
- The second state is a (non-degenerate) occupied \sigma state (m=0), with odd parity
- The third and fourth states are degenerate occupied \pi states (m=+1,-1), with odd parity
- The sixth and seventh states are degenerate unoccupied \pi states (m=+1,-1), with even parity
- The state 8 is a (non-degenerate) unoccupied \sigma state (m=0), with even parity
Combining states 3,4 and 5 with 6, 7 and 8, give the first nine Kohn-Sham energy differences:
Transition (Ha) and (eV) Tot. Ene. (Ha) Aver XX YY ZZ
5-> 6 3.06494E-01 8.34013E+00 -2.03684E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00
5-> 7 3.06494E-01 8.34013E+00 -2.03684E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00
5-> 8 3.50400E-01 9.53488E+00 -2.03245E+01 0.0000E+00 0.00E+00 0.00E+00 0.00E+00
4-> 6 3.60026E-01 9.79682E+00 -2.03149E+01 5.5534E-01 1.67E+00 0.00E+00 0.00E+00
3-> 6 3.60026E-01 9.79682E+00 -2.03149E+01 3.7821E-03 1.13E-02 0.00E+00 0.00E+00
4-> 7 3.60026E-01 9.79682E+00 -2.03149E+01 3.7822E-03 1.13E-02 0.00E+00 0.00E+00
3-> 7 3.60026E-01 9.79682E+00 -2.03149E+01 5.5534E-01 1.67E+00 0.00E+00 0.00E+00
4-> 8 4.03933E-01 1.09916E+01 -2.02710E+01 3.7976E-02 0.00E+00 1.14E-01 0.00E+00
3-> 8 4.03933E-01 1.09916E+01 -2.02710E+01 3.7976E-02 0.00E+00 0.00E+00 1.14E-01
Without the coupling matrix, these would be the excitation energies, for both the spin-singlet and spin-triplet states. The coupling matrix modifies the eigenenergies, by mixing different electronic excitations, and also lift some degeneracies, e.g. the quadruplet formed by the combination of the degenerate states 3-4 and 6-7 that gives the (four-fold degenerate) excitation energies with 3.60026E-01 Ha in the above table.
Indeed, concerning the spin-singlet, the following excitation energies are obtained (see the next section of the output file):
TDDFT singlet excitation energies (at most 20 of them are printed),
and corresponding total energies.
Excit# (Ha) and (eV) total energy (Ha) major contributions
1 3.45362E-01 9.39779E+00 -2.032952E+01 1.00( 5-> 7) 0.00( 1-> 7)
2 3.45434E-01 9.39975E+00 -2.032945E+01 1.00( 5-> 6) 0.00( 1-> 6)
3 3.60026E-01 9.79681E+00 -2.031486E+01 0.50( 3-> 6) 0.50( 4-> 7)
4 3.68693E-01 1.00326E+01 -2.030619E+01 0.99( 5-> 8) 0.00( 2-> 10)
5 3.83765E-01 1.04428E+01 -2.029112E+01 0.50( 4-> 7) 0.50( 3-> 6)
6 3.83798E-01 1.04437E+01 -2.029108E+01 0.50( 4-> 6) 0.50( 3-> 7)
7 4.03285E-01 1.09740E+01 -2.027160E+01 0.99( 3-> 8) 0.01( 4-> 8)
8 4.03304E-01 1.09745E+01 -2.027158E+01 0.99( 4-> 8) 0.01( 3-> 8)
9 4.59051E-01 1.24914E+01 -2.021583E+01 0.91( 2-> 8) 0.04( 3-> 7)
...
The excitation energies are numbered according to increasing energies, in Ha as well as in eV. The total energy is also given (adding excitation energy to the ground-state energy), and finally, the two major contributions to each of these excitations are mentioned (size of the contribution then identification).
It is seen that the first and second excitations are degenerate (numerical inaccuracies accounts for the meV difference), and mainly comes from the first and second Kohn-Sham energy differences (between occupied state 5 and unoccupied states 6 and 7). This is also true for the fourth excitation, that comes from the third Kohn-Sham energy difference (between occupied state 5 and unoccupied state 8). The quadruplet of Kohn-Sham energy differences, that was observed at 3.60026E-01 Ha, has been split into one doublet and two singlets, with numbers 3 (the lowest singlet), 5-6 (the doublet) while the last singlet is not present in the 20 lowest excitations.
The list of oscillator strength is then provided.
Oscillator strengths : (elements smaller than 1.e-6 are set to zero)
Excit# (Ha) Average XX YY ZZ XY XZ YZ
1 3.45362E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00
2 3.45434E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00
3 3.60026E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00
4 3.68693E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00
5 3.83765E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00
6 3.83798E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00
7 4.03285E-01 5.881E-02 0.000E+00 1.409E-03 1.750E-01 0.00E+00 0.00E+00 -1.57E-02
8 4.03304E-01 5.685E-02 0.000E+00 1.692E-01 1.361E-03 0.00E+00 0.00E+00 1.52E-02
9 4.59051E-01 8.613E-02 2.584E-01 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00
10 4.61447E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 0.00E+00 0.00E+00
...
The first six transitions are forbidden, with zero oscillator strength. The seventh and eighth transitions are allowed, with sizeable YY, YZ and ZZ components.
Next, one finds the excitation energies for the spin-triplet states:
TDDFT triplet excitation energies (at most 20 of them are printed),
and corresponding total energies.
Excit# (Ha) and (eV) total energy (Ha) major contributions
1 2.84779E-01 7.74923E+00 -2.039010E+01 1.00( 5-> 7) 0.00( 5-> 6)
2 2.84781E-01 7.74928E+00 -2.039010E+01 1.00( 5-> 6) 0.00( 5-> 7)
3 2.97188E-01 8.08689E+00 -2.037770E+01 0.50( 3-> 7) 0.50( 4-> 6)
4 3.30296E-01 8.98780E+00 -2.034459E+01 0.50( 4-> 7) 0.50( 3-> 6)
5 3.30344E-01 8.98913E+00 -2.034454E+01 0.50( 4-> 6) 0.50( 3-> 7)
6 3.43692E-01 9.35234E+00 -2.033119E+01 1.00( 5-> 8) 0.00( 2-> 10)
7 3.60026E-01 9.79681E+00 -2.031486E+01 0.50( 3-> 6) 0.50( 4-> 7)
8 3.85278E-01 1.04839E+01 -2.028961E+01 0.91( 2-> 7) 0.09( 3-> 8)
9 3.85310E-01 1.04848E+01 -2.028957E+01 0.91( 2-> 6) 0.08( 4-> 8)
...
Spin-triplet energies are markedly lower than the corresponding spin-singlet energies. Also, the highest singlet derived from the Kohn-Sham quadruplet is now the excitation number 7. The oscillator strengths also follow. At this stage, we are in position to compare with experimental data, and try to improve the quality of our calculation.
To summarize our results, we obtain the following five lowest-lying spin- singlet excitation energies, with corresponding quantum numbers (that we derive from the knowledge of the Kohn-Sham states quantum numbers):
9.40 eV m=+1,-1 even parity (Pi_g state)
9.80 eV m=0 odd parity (Sigma_u state)
10.03 eV m=0 even parity (Sigma_g state)
10.44 eV m=+2,-2 odd parity (Delta_u state)
10.97 eV m=+1,-1 odd parity (Pi_u state)
and the following five lowest-lying spin-triplet excitations energies, with corresponding quantum numbers:
7.75 eV m=+1,-1 even parity (Pi_g state)
8.09 eV m=0 odd parity (Sigma_u state)
8.99 eV m=+2,-2 odd parity (Delta_u state)
9.35 eV m=0 even parity (Sigma_g state)
9.80 eV m=0 odd parity (Sigma_u state)
The quantum number related to the effect of a mirror plane, needed for \Sigma states, could not be attributed on the sole basis of the knowledge of Kohn- Sham orbitals quantum numbers.
The lowest-lying experimental spin-singlet excitation energies, see table III of [Casida1998], are as follows:
9.31 eV m=+1,-1 even parity (Pi_g state)
9.92 eV m=0 odd parity (Sigma_u- state)
10.27 eV m=+2,-2 odd parity (Delta_u state)
and the lowest-lying experimental spin-triplet excitations energies are:
7.75 eV m=0 odd parity (Sigma_u+ state)
8.04 eV m=+1,-1 even parity (Pi_g state)
8.88 eV m=+2,-2 odd parity (Delta_u state)
9.67 eV m=0 odd parity (Sigma_u- state)
In several cases, the agreement is quite satisfactory, on the order of 0.1-0.2 eV. However, there are also noticeable discrepancies. Indeed, we have to understand, in our simulation:
- The appearance of the spin-singlet ^1\Sigma_g state at 10.03 eV (Spin-singlet state 3)
- The inversion between the spin-triplet ^3\Pi_g and ^3\Sigma_u states (Spin-triplet states 1 and 2)
- The appearance of the spin-triplet ^3\Sigma_g state at 9.35 eV (Spin-triplet state 4)
Still, the agreement between these TDDFT values and the experimental values is much better than anything that can be done on the sole basis of Kohn-Sham energy differences, that are (for spin-singlet and -triplet):
8.34 eV m=+1,-1 even parity (Pi_g state)
9.53 eV m=0 odd parity (Sigma_u state)
9.80 eV m=0(twice),+2,-2 odd parity (Sigma_u and Delta_u states)
10.99 eV m=+1,-1 odd parity (Pi_u state)
Convergence studies¶
There are several parameters subject to convergence studies in this context: the energy cut-off, the box size, and the number of unoccupied bands.
We will start with the number of unoccupied states. The only input parameter to be changed in the input file is the value of nband2. The following results are obtained, for nband2 = 12, 30, 60, 100 and 150 (Energies given in eV):
Singlet 1 : 9.40 9.37 9.33 9.30 9.28
Singlet 2 : 9.80 9.80 9.80 9.79 9.80
Singlet 3 : 10.03 9.91 9.85 9.83 9.83
Singlet 4 : 10.44 10.43 10.43 10.42 10.42
Singlet 5 : 10.97 10.97 10.97 10.97 10.97
Triplet 1 : 7.75 7.75 7.73 7.73 7.72
Triplet 2 : 8.06 8.02 7.98 7.96 7.95
Triplet 3 : 8.99 8.97 8.96 8.96 8.95
Triplet 4 : 9.35 9.34 9.34 9.34 9.34
Triplet 5 : 9.80 9.80 9.80 9.80 9.80
You might try to obtain one of these…
The computation with nband2 = 100 takes a bit more than 1 minute, and gives a result likely converged within 0.01 eV. Let us have a look at these data. Unfortunately, none of the above- mentioned discrepancies with experimental data is resolved, although the difference between the first and second spin-triplet states decreases significantly. Although we see that at least 60 bands are needed to obtain results converged within 0.05 eV, we will continue to rely on 12 bands to try to understand the most important discrepancies, while keeping the CPU time to a low level.
We next try to increase the cut-off energy. Again, this is fairly easy. One can e.g. set up a double dataset loop. The following results are obtained, for ecut = 25, 30, 35 and 45 Ha:
Singlet 1 : 9.40 9.37 9.36 9.36
Singlet 2 : 9.80 9.78 9.77 9.77
Singlet 3 : 10.03 10.03 10.04 10.04
Singlet 4 : 10.46 10.37 10.32 10.30
Singlet 5 : 10.97 10.98 10.98 10.98
Triplet 1 : 7.75 7.72 7.72 7.72
Triplet 2 : 8.09 8.06 8.06 8.06
Triplet 3 : 8.99 8.97 8.96 8.96
Triplet 4 : 9.35 9.35 9.35 9.35
Triplet 5 : 9.80 9.78 9.77 9.77
You might try to obtain one of these…
The computation with ecut=30 takes a couple of seconds and gives a result likely converged within 0.01 eV. The modifications with respect to the results with ecut=25 Ha are quite small.
We finally examine the effect of the cell size. Again, this is fairly easy. e keep 12 bands, but stick to ecut=30 Ha. One can e.g. set up a double dataset loop. The following results are obtained, for acell = (6 5 5), (8 7 7), (10 9 9), (12 11 11), (14 13 13), (16 15 15) and (20 19 19):
Singlet 1 : 9.37 9.25 9.24 9.24 9.25 9.25 9.25
Singlet 2 : 9.78 9.73 9.72 9.72 9.72 9.72 9.72
Singlet 3 : 10.03 10.04 10.18 10.26 10.29 10.32 10.34
Singlet 4 : 10.42 10.35 10.34 10.34 10.34 10.34 10.35
Singlet 5 : 10.98 11.34 11.40 11.12 10.95 10.84 10.70
Triplet 1 : 7.72 7.60 7.60 7.60 7.60 7.60 7.60
Triplet 2 : 8.06 8.07 8.07 8.08 8.08 8.08 8.08
Triplet 3 : 8.97 8.94 8.94 8.94 8.94 8.94 8.94
Triplet 4 : 9.35 9.73 9.72 9.72 9.72 9.72 9.72
Triplet 5 : 9.78 9.75 10.00 10.12 10.18 10.22 10.27
Obviously, the cell size plays an important role in the spurious appearance of the states, that was remarked when comparing against experimental data. Indeed, the singlet 3 and triplet 4 states energy increases strongly with the cell size, while all other states quickly stabilize (except the still higher singlet 5 state). Actually, the singlet 3 and 4 switch between (16 15 15) and (20 19 19), and the triplet 4 and 5 switch between (6 5 5) and (8 7 7) … The presence of the singlet 3 state (Sigma_g) in the three lowest ones, an the triplet 4 state (Sigma_g) were two of our discrepancies.
There is one lesson to be learned from that convergence study: the convergence of different states can be quite different. Usually, converging the lower excited states do not require too much effort, while it is quite difficult, especially concerning the supercell size, to converge higher states.
At this stage, we will simply stop this convergence study, and give the results of an ABINIT calculation using ecut 30 Hartree, acell 10 9 9, and 100 bands, focusing only on those states already converged, then compare the results with other LDA/TDLDA results (from [Casida1998]) and experimental results:
present Casida experimental
Singlet Pi_g : 9.20 9.05 9.31
Singlet Sigma_u- : 9.72 9.63 9.92
Singlet Delta_u : 10.33 10.22 10.27
Triplet Sigma_u+ : 7.99 7.85 7.75
Triplet Pi_g : 7.59 7.54 8.04
Triplet Delta_u : 8.92 8.82 8.88
Triplet Sigma_u- : 9.72 9.63 9.67
Our calculation is based on pseudopotentials, while Casida’s calculation is an all-electron one. This fact might account for the discrepancy between both calculations (maximal 0.15 eV - it is of course the user’s responsibility to test the influence of different pseudopotentials on his/her calculations). The agreement with experimental data is on the order of 0.2 eV, with the exception of the ^3\Pi_g state (0.45 eV). In particular, we note that LDA/TDLDA is not able to get the correct ordering of the lowest two triplet states … One of our problems was intrinsic to the LDA/TDLDA approximation …
The choice of the exchange-correlation potential and kernel¶
As emphasized in [Casida1998], choosing a different functional for the self-consistent part (XC potential) and the generation of the coupling matrix (XC kernel) can give a better description of the higher-lying states. Indeed, a potential with a -1/r tail (unlike the LDA or GGA) like the van Leeuwen-Baerends one [VanLeeuwen1994], can reproduce fairly well the ionisation energy, giving a much better description of the Rydberg states. Still, the LDA kernel works pretty well.
In order to activate this procedure, set the value of ixc in dataset 1 to the SCF functional, and the value of ixc in dataset 2 to the XC functional to be used for the kernel. Use pseudopotentials that agree with the SCF functional in dataset 1. As of writing (end of 2020), the ABINIT implementation has a strong restriction on the XC kernels that can be used. They must be of LDA-type. See the list of allowed ixc values in the description of iscf=-1.